# NAVAL POSTGRADUATE SCHOOL Monterey, California 



INVERSE PROBLEMS FOR ORTHOGONAL MATRICES, TODA FLOWS, AND SIGNAL PROCESSING by
L. Faybusovich
G. S. Ammar
W. B. Gragg

> Technical Report For Period

July 1992 - September 1992

Approved for public release; distribution unlimited Prepared for: Naval Postgraduate School Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943
Rear Admiral R. W. West, Jr. Harrison Shull Superintendent Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate School and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized. This report was prepared by:

UNCLASSIFIED

## DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

 SECURITY CLASSIFICATION OF THIS PAGE| REPORT DOCUMENTATION PAGE |  |  |  |  | Form Approved OMB NO 0704-0188 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED |  | 1b RESTRICTIVE MARKINGS |  |  |  |
| 2a SECURITY CLASSIFICATION AUTHORITY |  | 3 DISTRIBUTION/AVAILABILITY OF REPORT <br> Approved for public release; Distribution unlimited |  |  |  |
| 4 PERFORMING ORGANIZATION REPORT NUMBER(S) NPS-MA-93-001 |  | 5 MONITORING ORGANIZATION REPORT NUMBER(S)NPS-MA-93-001 |  |  |  |
| 6a NAME OF PERFORMING ORGANIZATION Naval Postgraduate School | 6b OFFICE SYMBOL (If applicable) MA | 7a NAME OF Naval Po | NITORING <br> graduat | $\begin{aligned} & \text { NIZATIC } \\ & \text { chool } \end{aligned}$ |  |
| 6c. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943 |  | 7b ADDRESS (City, State, and ZIP Code) Monterey, CA 93943 |  |  |  |
| 8a. NAME OF FUNDING/SPONSORING organization <br> Naval Postgraduate School | 8b OFFICE SYMBOL (If applicable) MA | 9 PROCUREM $0 \& M, N$ | INSTRUME | NTIFIC | N NUMBER |
| 8c. ADDRESS (City, State, and IIP Code) Monterey, CA 93943 |  | 10 SOURCE OF FUNDING NUMBERS |  |  |  |
|  |  | PROGRAM ELEMENT NO | $\begin{aligned} & \text { PROJECT } \\ & \text { NO } \end{aligned}$ | $\begin{array}{\|l} \hline \text { TASK } \\ \text { NO } \end{array}$ | $\begin{aligned} & \text { WORK UNIT } \\ & \text { ACCESSION NO } \end{aligned}$ |
| 11 TITLE (Include Security Classification) signal processing <br> Inverse problems for orthogonal matrices, Toda flows, and |  |  |  |  |  |

12. PERSONAL AUTHOR(S)
L. Faybusovich, G. S. Ammar, W. B. Gragg

| 13a TYPE OF REPORT Technical | $\begin{aligned} & \text { 13b TIME COVERED } \\ & \text { FROM } 7 / 92 \text { TO } 9 / 92 \end{aligned}$ | $\begin{aligned} & 14 \text { DATE OF REPORT (Year, Month, Day) } \\ & 921013 \end{aligned}$ | $\begin{aligned} & 15 \text { PAGE COUNT } \\ & 6 \end{aligned}$ |
| :---: | :---: | :---: | :---: |

16 SUPPLEMENTARY NOTATION

| COSATI CODES |  |  |
| :--- | :--- | :--- |
| FIELD | GROUP | SUB-GROUP |
|  |  |  |
|  |  |  |

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) orthogonal matrices, Toda flows, signal processing

19 ABSTRACT (Contınue on reverse if necessary and identify by block number)
We consider Toda flows induced on the set of orthogonal upper Hessenberg matrices. The explicit formulas for the evolution of Schur parameters are given.


# Inverse problems for orthogonal matrices, Toda flows, and signal processing 

L. Faybusovich<br>Department of Mathematics, University of Notre Dame

G.S. Ammar<br>Department of Math. Sciences, Northern Illinois University

W.B. Gragg

Department of Mathematics, Naval Postgraduate School

## Abstract

We consider Toda flows induced on the set of orthogonal upper Hessenberg matrices. The explicit formulas for the evolution of Schur parameters are given.

## 1 Introduction

Any symmetric nonnegative definite Toeplitz matrix $T_{n+1}$ of order $n+1$ can be modeled as an autocorrelation matrix of a stationary signal [12]

$$
x_{m}=\sum_{l=1}^{p} \alpha_{l} \cos \left(m \omega_{l}+\theta_{l}\right)+y_{m}
$$

where $\theta_{l}$ are arbitrary phase shifts and $y_{m}$ is a zero mean white noise process whose variance equals the smallest eigenvalue $\lambda_{\text {nuin }}$ of $T_{n+1}$. Assume that the eigenvalue $\lambda_{\text {min }}$ is simple, and let $\left(\eta_{0}, \cdots, \eta_{n}\right)$ be a corresponding eigenvector. Then [12] the polynomial

$$
\psi_{n}(\lambda)=\eta_{0}+\ldots+\eta_{n} \lambda^{n}
$$

has $n$ distinct roots $\lambda_{1}, \cdots, \lambda_{n}$ on the unit circle, and the frequencies of $x_{m}$ are given by $\left\{\exp \left( \pm i \omega_{l}\right\}_{l=1}^{p}=\left\{\lambda_{j}\right\}_{j=1}^{n}\right.$, where $i$ denotes the imaginary unit. One can construct [2] an orthogonal Hessenberg matrix $O$ with characteristic polynomial proportional to $\psi_{n}$. Moreover,
the amplitudes $\alpha_{l}$ can be recovered from the first components of the normalized eigenvectors of $O$. One can then use any of several algorithms designed for unitary and orthogonal Hessenberg eigenproblems $[9,6,1,10,4]$
to calculate the frequencies and amplitudes. In the present paper we investigate another aspect of orthogonal Hessenberg matrices. Namely, we consider Toda flows on these matrices (referred to as Schur flows in [3]) and obtain explicit formulas for the evolution of the so-called Schur parameters under the Toda flow. Since Schur parameters determine orthogonal Hessenberg matrices uniquely, we actually obtain an explicit description of the evolution of a given orthogonal Hessenberg matrix under the Toda flow.

## 2 Inverse problem for orthogonal Hessenberg matrices

Let $M$ be the set of positive Borel measures on $C$ which have the following properties. For any $\mu \in M$ the support of $\mu$, which we denote by $\Lambda_{\mu}$, consists of exactly $n$ points which lie on the unit circle $U$ and is such that: $i$ ) if $\lambda \in \Lambda_{\mu}$, then the complex conjugate $\bar{\lambda}$ is also in $\Lambda_{\mu}$ and $\mu\{\lambda\}=\mu\{\bar{\lambda}\} ;$ ii) $\mu\{\lambda\}>0$ for any $\lambda$ in $\Lambda_{\mu}$; iii) $\mu(C)=1$; iv $-1 \notin \Lambda_{\mu}$. We further introduce a class $O H_{+}$of orthogonal matrices
$O=\left\|o_{i j}\right\|$ such that $o_{i j}=0$ if $i-j>1$, $o_{i+1, i}>0$ for all $i$ and $\operatorname{det} O=1$. Finally, given a vector $\tau=\left(\tau_{0}, \cdots, \tau_{n-1}\right)^{T} \in R^{n}$ introduce a corresponding Toeplitz matrix $T(\tau)=\left\|t_{i j}\right\|$, where $t_{i j}=\tau_{|i-j|}$.

Theorem 2.1 Given a positive definite symmetric Toeplitz matrix $T(\tau)$ with $\tau_{0}=1$ there exist exactly one measure $\mu \in M$ and exactly one $O \in O H_{+}$such that

$$
\begin{equation*}
\int_{C} \lambda^{i} d \mu(\lambda)=\tau_{i}=<e_{1}, O^{i} e_{1}> \tag{2.1}
\end{equation*}
$$

$i=0, \cdots, n-1$. Here $e_{1}, \cdots, e_{n}$ is the canonical basis in $R^{n}$ and $<,>$ is the standard scalar product. Conversely, for any $\mu \in M$ and any $O \in O H_{+}$the matrices $T(\tau), T\left(\tau^{\prime}\right)$ are Positive definite Toeplitz matrices. Here

$$
\tau_{i}=\int_{C} \lambda^{i} d \mu(\lambda), \tau_{i}^{\prime}=<e_{1}, O^{i} e_{1}>
$$

$i=0, \cdots, n-1$.
Remark 2.2 Theorem 2.1 is more or less known to the experts (see e.g. [8], [11]). We nevertheless give an independent proof to clarify relationships between introduced objects.

Remark 2.3 There is nothing mysterious about the number -1 which we have excluded from the support of each measure in $M$. This simplifies notations a little bit.

We need the following elementary lemma.
Lemma 2.4 Let $v_{1}, \cdots, v_{n-1}$ be an orthonormal system of vectors in $R^{n}$. There exists exactly one orthogonal matrix $O$ such that $O e_{i}=$ $v_{i}, i=1, \cdots, n-1$ and $\operatorname{det} O=1$.

We can now outline a proof of Theorem 2.1. Proof: Denote by $P_{n}$ the vector space of real polynomials of degree less or equal $n-1$. Set

$$
\begin{equation*}
<\lambda^{i}, \lambda^{j}>=\int_{C} \lambda^{i-j} d \mu(\lambda) \tag{2.2}
\end{equation*}
$$

We prove that (2.2) defines a positive definite scalar product on $P_{n}$. Observe that

$$
\int \lambda^{i} \bar{\lambda}^{j} d \mu=\int \lambda^{i-j} d \mu=\int \bar{\lambda}^{i} \lambda^{j} d \mu
$$

Indeed, $\int \lambda^{i} \bar{\lambda}^{j} d \mu=\sum_{\lambda \in \Lambda_{\mu}} \lambda^{i} \bar{\lambda}^{j} \mu\{\lambda\}=$ $\sum_{\lambda \in \Lambda_{\mu}} \lambda^{i-j} \mu\{\lambda\}$, since $\bar{\lambda}=\lambda^{-1}$ for $\lambda \in U$. Further, since $\mu\{\lambda\}=\mu\{\bar{\lambda}\}$ we have

$$
\sum_{\lambda \in \Lambda_{\mu}} \lambda^{i-j} \mu\{\lambda\}=\sum_{\lambda \in \Lambda_{\mu}} \bar{\lambda}^{i-j} \mu\{\bar{\lambda}\}=\int \bar{\lambda}^{i} \lambda^{j} d \mu
$$

Let $q=a_{0}+\ldots+a_{n-1} \lambda^{n-1} \in P_{n}$. We have
$<q, q>=\sum_{i, j=0}^{n-1} a_{i} a_{j} \int \lambda^{i} \bar{\lambda}^{j} d \mu=\int|q|^{2} d \mu \geq 0$.
Further, $\int|q|^{2} d \mu=0$ if and only if $q(\lambda)=0$ for any $\lambda \in \Lambda_{\mu}$. Since $\operatorname{deg} q<n=\operatorname{card}\left(\Lambda_{\mu}\right)$, this is possible only if $q=0$. Consider the polynomial $\xi(\lambda)=\prod_{t \in \Lambda_{\mu}}(\lambda-t)=b_{0}+\ldots+$ $b_{n-1} \lambda^{n-1}+\lambda^{n}$. Since all roots of $\xi$ lie on the unit circle we clearly have $\lambda^{n} \xi(1 / \lambda)=$ $b_{0} \xi(\lambda), b_{0}= \pm 1$. Further, all coefficients of $\xi$ are real because $\bar{\Lambda}_{\mu}=\Lambda_{\mu}$. Consider the linear operator $O: P_{n} \rightarrow P_{n}$ defined as follows: $O \lambda^{i}=\lambda^{i+1}, i=0, \cdots, n-2, O \lambda^{n-1}=$ $-b_{0}-b_{1} \lambda-\ldots-b_{n-1} \lambda^{n-1}$. We now prove that $O$ is orthogonal relative to the scalar product $<,>$. We should prove that

$$
\left\langle O \lambda^{i}, \lambda^{j}\right\rangle=\left\langle\lambda^{i}, O^{-1} \lambda^{j}\right\rangle
$$

for any $i, j=0, \cdots, n-1$. The only nontrivial case is $i=n-1, j=0$. We have $<O \lambda^{n-1}, 1>=-b_{0}-b_{1} \tau_{1}-\ldots-b_{n-1} \tau_{n-1}$, where $\tau_{i}=\int_{C} \lambda^{i} d \mu(\lambda)$. Let $O^{-1} 1=c_{0}+\ldots+$ $c_{n-1} \lambda^{n-1}$. Then $\left\langle\lambda^{n-1}, O^{-1} 1\right\rangle=c_{0} \tau_{n-1}+$ $c_{1} \tau_{n-2}+\ldots+c_{n-1}$. Thus, it is sufficient to prove that $c_{i}=-b_{n-1-i}, i=0, \cdots, n-1$. We clearly have $1=c_{0} O 1+\ldots+c_{n-1} O \lambda^{n-1}=c_{0} \lambda+\ldots+$ $c_{n-2} \lambda^{n-1}+c_{n-1}\left(-b_{0}-b_{1} \lambda-\ldots-b_{n-1} \lambda^{n-1}\right)$ or $1=-c_{n-1} b_{0}, c_{0}-c_{n-1} b_{1}=0, c_{1}-c_{n-1} b_{2}=$ $0, \cdots, c_{n-2}-c_{n-1} b_{n-1}=0$. This yields $b_{1}=$ $-c_{0} / b_{0}, b_{2}=-c_{1} / b_{0}, \cdots, b_{n-1}=-c_{n-2} / b_{0}$. We now use the relation $\lambda^{n} \xi(1 / \lambda)=b_{0} \xi(\lambda)$. It follows that $b_{n-i}=b_{0} b_{i}, i=0, \cdots, n$. Thus $b_{n-i} / b_{0}=-c_{i-1} / b_{0}, i=1, \cdots, n$. These are exactly the required conditions. Thus we have constructed an orthogonal operator $O$ such that $\int_{C} \lambda^{i} d \mu=<1, O^{i} 1>, i=$ $0, \cdots, n-1$. Observe that the characteristic
polynomial of $O$ coincides with $\xi$. Thus the spectrum of $O$ is $\Lambda_{\mu}$. In particular, $\operatorname{det} O=$ 1 (here we use the assumption that $-1 \notin$ $\Lambda_{\mu}$ ). Let $p_{0}=1, \cdots, p_{n-1}$ be an orthonormal basis in $P_{n}$ obtained by the orthonormalization of the basis $1, \lambda, \cdots, \lambda^{n-1}$. It is clear that the matrix $\tilde{O}$ of the operator $O$ is upper Hessenberg in this basis. Moreover, the entries $\tilde{o}_{i+1, i}$ are all nonzero (otherwise, $\operatorname{span}\left(p_{0}, \cdots, p_{i-1}\right)=\operatorname{span}\left(1, \cdots, \lambda^{i-1}\right)$ is an invariant subspace of $O$ which is not true). Without loss of generality one can suppose that $\tilde{o}_{i+1, i}>0$ for all $i$. Otherwise one can take $\operatorname{diag}\left(\epsilon_{1}, \cdots, \epsilon_{n}\right) \tilde{O} \operatorname{diag}\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)$.

Suppose we are given a positive definite Toeplitz matrix $T(\tau)$ and an orthogonal matrix $O \in O H_{+}$such that $\tau_{i}=<e_{1}, O^{i} e_{1}>, i=$ $0, \cdots, n-1$. Then

$$
\begin{equation*}
T(\tau)=V^{\tau} V, \tag{2.3}
\end{equation*}
$$

where $V$ is the upper triangular matrix [ $e_{1}, O e_{1}, \cdots, O^{n-1} e_{1}$ ] with positive entries on the main diagonal. But (2.3) is the Cholesky decomposition of $T(\tau)$. Hence it is uniquely defined by $T(\tau)$. In other words, the vectors $O e_{1}, \cdots, O^{n-1} e_{1}$ are uniquely defined by $T(\tau)$. Since these vectors form a basis, the vectors $O e_{1}, \cdots, O e_{n-1}$ are uniquely defined by our Toeplitz matrix. Thus by Lemma 2.4 the matrix $O$ is uniquely defined by $T(\tau)$. Given a positive definite Toeplitz matrix $T(\tau)$ we can endow $P_{n}$ with a scalar product $<,>$ and the shift operator defined on $\operatorname{span}\left(1, \lambda, \cdots, \lambda^{n-2}\right)$ as we did before. Then using Lemma 2.4 we can extend this operator to the orthogonal operator $O$, defined on $P_{n}$ such that $\operatorname{det} O=1$. Then the matrix of $O$ in the basis obtained by orthonormalization of the basis $1, \lambda, \cdots, \lambda^{n-1}$ belongs to $O H_{+}$and $\tau_{i}=<e_{1}, O^{i} e_{1}>, i=$ $0, \cdots, n-1$. Consider now the rational function

$$
\left.f(z)=<1,(z I-O)^{-1} 1\right\rangle
$$

As is easily seen

$$
f(z)=\sum_{i=1}^{n} \frac{r_{i}}{z-\lambda_{i}}
$$

where all $r_{i}>0$. We then can define the measure $\mu \in M$ by the conditions $\mu\left\{\lambda_{i}\right\}=r_{i}$ and equal to zero otherwise. We immediately see that equations (2.1) are satisfied. It remains to prove that the measure $\mu$ is defined uniquely by conditions (2.1). Let $\mu_{k} \in M, k=1,2$ be such that

$$
\int_{C} \lambda^{i} d \mu_{1}=\int_{C} \lambda^{i} d \mu_{2}
$$

$i=0, \cdots, n-1$. Then we can construct $O_{k}, k=1,2$ such that conditions (2.1) are satisfied. But then $O_{1}=O_{2}$. In particular, $\Lambda_{\mu_{1}}=\Lambda_{\mu_{2}}$, i.e., $\mu_{1}=\mu_{2}$ because we have for $\mu\{\lambda\}$ the following system of Vandermonde equations:

$$
\sum_{\lambda \in \Lambda_{\mu}} \lambda^{i} \mu\{\lambda\}=\tau_{i}
$$

$i=0, \cdots, n-1$.
Let $T(\tau)$ be a positive definite $n \times n$ Toeplitz matrix and $<,>$ be the corresponding scalar product on $P_{n}$. Let

$$
p_{i}(\lambda)=\delta_{i} \lambda^{i}+\ldots, \delta_{i}>0, i=0, \cdots, n-1
$$

be the basis obtained by the orthonormalization procedure from the basis $1, \lambda, \cdots, \lambda^{n-1}$. Since $p_{i}$ is orthogonal to $\operatorname{span}\left(1, \lambda, \cdots, \lambda^{i-1}\right)$, we have: $\lambda p_{i}(\lambda)$ is orthogonal to $\operatorname{span}\left(\lambda, \cdots, \lambda^{i}\right)$. Further, $r=\lambda p_{i}(\lambda) / \delta_{i}-p_{i+1} / \delta_{i+1} \in P_{i+1}$. Let $\varphi_{i} \in P_{i+1}$ be such that $\left\langle q, \varphi_{i}\right\rangle=q(0)$ for any $q \in P_{i+1}$. Since $p_{i}$ is orthogonal to $P_{i}$ and both $r$ and $\varphi_{i}$ are orthogonal to $\lambda P_{i}$, we obtain

$$
\begin{equation*}
\lambda p_{i}(\lambda) / \delta_{i}=p_{i+1}(\lambda) / \delta_{i+1}+\gamma_{i} \varphi_{i} \tag{2.4}
\end{equation*}
$$

for some real $\gamma_{i}, i=0, \cdots, n-2$. An easy calculation shows that $\varphi_{i}=\delta_{i} \lambda^{i} p_{i}(1 / \lambda)$. Hence

$$
\begin{equation*}
1=\delta_{i}^{2} / \delta_{i+1}^{2}+\gamma_{i}^{2} \delta_{i}^{4} \tag{2.5}
\end{equation*}
$$

In other words, if we know $\gamma_{0}, \cdots, \gamma_{n-2}$, we can find $\delta_{1}, \cdots, \delta_{n-1}$. Then using (2.4), one can determine $p_{1}, \cdots, p_{n-1}$ and consequently using
again (2.4) the corresponding upper Hessenberg orthogonal matrix $O$. We have by (2.4) $<\lambda p_{i}(\lambda), p_{i}(\lambda)>=\gamma_{i} \delta_{i} p_{i}(0), i=0, \cdots, n-2$. Evaluating (2.4) at 0 , we obtain $p_{i+1}(0)=$ $-\gamma_{i} \delta_{i}^{2} \delta_{i+1}, i=0, \cdots, n-2$. Thus $o_{i+1, i+1}=<$ $\lambda p_{i} \lambda, p_{i}(\lambda)>=-\gamma_{i} \gamma_{i-1} \delta_{i-1}^{2} \delta_{i}^{2}, i=1, \cdots, n-2$. Further, $o_{1,1}=-\gamma_{0} p_{0}(0)=-\gamma_{0}$. Let us set

$$
\sigma_{i}=o_{i+1, i}=\delta_{i-1} / \delta_{i}, \nu_{i}=\gamma_{i-1} \delta_{i-1}^{2},
$$

$i=1, \cdots, n-1$. We obviously have

$$
\sigma_{i}^{2}+\nu_{i}^{2}=1, o_{i, i}=-\nu_{i-1} \nu_{i}
$$

$i=1, \cdots, n-1, \nu_{0}=1$. Further, $o_{n, n}=$ $\pm \sqrt{1-\sigma_{n-1}^{2}}$. The sign is defined by the condition $\operatorname{det} O=1$. The quantities $\nu_{i}, \sigma_{i}$ are called Schur parameters and auxiliary Schur parameters, respectively. As we saw above the Schur parameters $\nu_{i}, i=1, \cdots, n-1$, determine $O$ uniquely.

On the other hand, if we know the entries $o_{i+1, i}=\delta_{i} / \delta_{i+1}, i=1 \cdots, n-1$ of the matrix $O$ we can determine $\gamma_{i}$ by (2.5) up to a sign. In other words, the entries $o_{i+1, i}$ (auxiliary Schur parameters) determine $O$ almost uniquely.

## 3 Explicit formulas for the evolution of auxiliary Schur parameters under the Toda flow

Let $O(t)=\left\|o_{i j}(t)\right\|$ be the solution to the Toda flow

$$
\dot{O}=[O, \pi O]
$$

such that $O(0)$ is upper Hessenberg orthogonal and irreducible. Here $\pi O=O_{-}-O_{-}^{T}$ and $O_{-}$ is strictly lower triangular part of $O$. Then $O(t)$ possesses the same properties and $O(t)$ converges when $t \rightarrow \infty$ to a block diagonal matrix. Each two by two block corresponds to a pair of complex conjugate eigenvalues. The blocks are arranged in the decreasing order of real parts of eigenvalues $[7,5]$. From the previous discussion we know that $O(t)$ is almost
uniquely defined by its auxiliary Schur parameters $\sigma_{i}(t)=o_{i+1, i}(t)$. We now describe explicitly how these parameters evolve under the Toda flow.

## Theorem 3.1

$$
\sigma_{i}(t)=\frac{\sqrt{\Delta_{i+1}(t) \Delta_{i-1}(t)}}{\Delta_{i}(t)} \sigma_{i}(0),
$$

$i=1, \cdots, n-1, \Delta_{0}=1$. Here $\Delta_{i}(t)$ is the $i-$ th principal minor of the matrix $\Gamma(t)=$ $\exp \left(\left(O(0)+O(0)^{T}\right) t\right)$.

## Proof:

We
know [7] that $O(t)=R(t) Q(0) R(t)^{-1}$, where $\exp (O(0) t)=Q(t) R(t), Q(t)$ is orthogonal, and $R(t)$ is an upper triangular matrix with positive entries on the main diagonal. We then clearly have

$$
\begin{equation*}
\sigma_{i}(t)=\frac{r_{i+1, i+1}(t)}{r_{i, i}(t)} \sigma_{i}(0) \tag{3.1}
\end{equation*}
$$

$i=1, \cdots, n-1$. Here $R(t)=\left\|r_{i j}(t)\right\|$. The operator $\bigwedge^{i} R(t)$ naturally acts on the $i-$ th exterior power $\Lambda^{i} R^{n}$ by the following rule: $\wedge^{i} R(t)\left(v_{1} \wedge \ldots \wedge v_{i}\right)=R(t) v_{1} \wedge \ldots R(t) v_{i}$ for any $v_{1}, \cdots, v_{i} \in R^{n}$. We have, further, the following relations:

$$
\begin{gathered}
r_{11}^{2}(t)=<R(t) e_{1}, R(t) e_{1}>= \\
<\exp (O(0) t) e_{1}, \exp (O(0) t) e_{1}>= \\
<e_{1}, \Gamma(t) e_{1}>=\Delta_{1}(t)
\end{gathered}
$$

And more generally

$$
\begin{gather*}
r_{11}^{2}(t) \ldots r_{i i}^{2}(t)= \\
<e_{1} \wedge \ldots \wedge e_{i}, \bigwedge^{i} \Gamma(t)\left(e_{1} \wedge \ldots \wedge e_{i}\right)>=\Delta_{i}(t) \tag{3.2}
\end{gather*}
$$

$i=1, \cdots, n$. By (3.2) we easily obtain

$$
\frac{r_{i+1, i+1}(t)}{r_{i, i}(t)}=\frac{\sqrt{\Delta_{i+1}(t) \Delta_{i-1}(t)}}{\Delta_{i}(t)}
$$

The result now follows by (3.1).

We have the following differential equations for $\sigma_{i}:$

$$
\dot{\sigma}_{i}=\sigma_{i}\left(o_{i+1, i+1}-o_{i, i}\right),
$$

$i=1, \cdots, n-1$. Recalling that $o_{i, i}=-\nu_{i-1} \nu_{i}$, $i=1, \cdots, n, \nu_{n}= \pm 1$, and $\nu_{i}^{2}+\sigma_{i}^{2}=1$, we obtain $\dot{\nu}_{i} \nu_{i}+\dot{\sigma}_{i} \sigma_{i}=0$ or

$$
\begin{aligned}
& \dot{\sigma}_{i}=\sigma_{i} \nu_{i}\left(\nu_{i-1}-\nu_{i+1}\right), \\
& \dot{\nu}_{i}=-\sigma_{i}^{2}\left(\nu_{i-1}-\nu_{i+1}\right),
\end{aligned}
$$

$i=1, \cdots, n-1$. It is interesting to find how moments $\tau_{i}(t)=<e_{1}, O(t)^{i} e_{1}>$ evolve under the Toda flow. Consider the family of rational functions

$$
f_{t}(z)=<e_{1},[z E-O(t)]^{-1} e_{1}>
$$

We clearly have

$$
f_{t}(z)=\sum_{i=0}^{\infty} \frac{\tau_{i}(t)}{z^{i+1}}
$$

On the other hand,

$$
\begin{gathered}
f_{t}(z)=<Q(t) e_{1},[z E-O(0)]^{-1} Q(t) e_{1}>= \\
\frac{\left\langle\exp (O(0) t) e_{1},[z E-O(0)]^{-1} \exp (O(0) t) e_{1}>\right.}{<\exp (O(0) t) e_{1}, \exp (O(0) t) e_{1}>}= \\
\sum_{i=0}^{\infty} \frac{h_{i}(t)}{z^{i+1} h_{0}(t)} .
\end{gathered}
$$

## Here

$h_{i}(t)=<\exp (O(0) t) e_{1}, O(0)^{i} \exp (O(0) t) e_{1}>$.
Thus $\tau_{i}(t)=\tau_{-i}(t)=h_{i}(t) / h_{0}(t), i \geq 0$. We clearly have

$$
\dot{h}_{i}(t)=h_{i+1}(t)+h_{i-1}(t) .
$$

Thus,

$$
\dot{\tau}_{i}=\tau_{i+1}+\tau_{i-1}-2 \tau_{i} \tau_{1}
$$

$i=0,1 \cdots$.

## References

[1] G.S. Ammar, W.B. Gragg and L. Reichel, On the Eigenproblem for Orthogonal Matrices, Proceedings of the 25 th Conference on Decision and Control, IEEE, New York, 1063-1966 (1986).
[2] G.S. Ammar, W.B. Gragg and L. Reichel, Determination of Pisarenko frequency estimates as eigenvalues of an orthogonal matrix, in Advanced Algorithms and Architectures for Signal Processing II (F.T. Luk, ed.), Proc. SPIE vol. 826, 143-145 (1987).
[3] G.S. Ammar and W.B. Gragg, Schur Flows, preprint.
[4] A. Bunse-Gerstner and L. Elsner, Schur parameter pencils for the solution of the unitary eigenproblem, Lin. Alg. Appl., vol. 154-156, 741-778 (1991).
[5] M.Chu, On the global convergence of the Toda lattice for real normal matrices and its application to the eigenvalue problem, SIAM J. Math. Anal., vol. 15, 98-104 (1984).
[6] P.G. Eberlein and C.P. Huang, Global convergence of the $Q R$-algorithm for unitary matrices with some results for normal matrices, SIAM J. Numer. Anal., vol. 12, 97-104 (1975).
[7] L.E.Faybusovich, $Q R$-algorithm and generalized Toda flows, Ukranian. Mat. J., vol. 45, 944-952 (1989).
[8] W.B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle (in Russian), in Numerical Methods in Linear Algebra (E.S. Nikolaev, ed.), Moscow Univ. Press, 1-8 (1986).
[9] W.B.Gragg, The $Q R$-algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math., vol. 16, 1-8 (1986).
[10] W.B. Gragg and L. Reichel, A divide and conquer method for unitary and orthogonal eigenproblems, Numer. Math., vol. 57, 695-718 (1990).
[11] H.J. Landau, Maximum entropy and the moment problem, Bull. Amer. Math. Soc. vol. 16, 47-77 (1987).
[12] V.F. Pisarenko, The retrieval of harmonics from a covariance function, Geophys. J. R. Astr. Soc., vol. 33, 347-366 (1973).
Director(2)Defense Tech Information CenterCameron StationAlexandria, VA 22314
Research Office(1)Code 81Naval Postgraduate SchoolMonterey, CA 93943
Library ..... (2)
Code 52
Naval Postgraduate School
Monterey, CA 93943Professor Richard FrankeDepartment of MathematicsNaval Postgraduate SchoolMonterey, CA 93943
Dr. Neil L. Gerr(1)Mathematical Sciences DivisionOffice of Naval Research800 North Quincy StreetArlington, VA 22217-5000
Dr. Richard Lau(1)
Mathematical Sciences Division
Office of Naval Research
800 North Quincy StreetArlington, VA 22217-5000
Harper Whitehouse (Code 743)(1)
NCCOSC RDT\&E Division
271 Catalina Blvd.
San Diego, CA 92152-5000
Keith Bromley (Code 7601)(1)NCCOSC RDT\&E Division271 Catalina Blvd.San Diego, CA 92152-5000
John Rockway (Code 804)(1)NCCOSC RDT\&E Division271 Catalina Blvd.San Diego, CA 92152-5000
Professor William B. Gragg(1)
Department of MathematicsNaval Postgraduate School
Monterey, CA 93943

